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A Survey of Analytic Techniques
in Inventory Theory

HERBERT E. SCARF, Stanford University

During the last ten years many articles and books have been written
about inventory theory. The purpose of this paper is to summarize some
of the results that have been reported, and to describe some of the techniques
that have turned out to be fruitful.

There is, of course, a certain ambiguity in the choice of topics to be
included under the heading of inventory theory. Broadly speaking, vir-
tually any topic in operations research can be thought of as dealing with
the economical management of stocks of commodities. In addition, large
areas of economic theory are concerned with problems similar to problems
of operations research. Any dynamic problem in economic theory is
necessarily concerned with stocks, whether these be interpreted as capital,
manufacturers inventories, bank reserves, or the accumulated savings and
assets of an individual consuming unit.

In this paper I shall restrict my attention to those topics in inventory
theory that can most naturally be thought of as operations research rather
than economic theory. This is by no means a sharp distinction. I shall,
for example, include some discussion of the problem of minimizing pro-
duction and storage costs in a dynamic model, but shall not include any
remarks on the problems of allocating assets into current consumption
and savings, many of which can be treated by virtually identical techniques.
My choice of topics to be included in this survey is necessarily somewhat
arbitrary, and should not be misinterpreted as a judgment on the relative
merits of these topics.

In organizing this paper, I have found it convenient to maintain the
categories that were used by Arrow, Karlin, and Scarf [3]. T shall begin
with a discussion of the general characteristics of inventory problems.
The second section will be on deterministic models, in which all costs,
prices, and demands are known with certainty. This will be followed by
a section on stochastic inventory models, emphasizing the dynamic pro-
gramming approach to problems in which demand is a random variable.
In the fourth section I shall discuss the analysis of infinite-period inventory
models from a variety of points of view. The final section deals with
multi-echelon models.

185

Reprinted from MULTISTAGE [MYENTORY MODELS
AND TECHMIQUES edited by Herbert E. Scarf
Derothy M. Gilford, and Maynard W. Shelly.
Published by Stanford University Press.

© 1963 by the Board of Trusiees of the Leland
Stanford Junior University,



186 HERBERT E. SCARF

The emphasis in this survey will be primarily theoretical and analytical;
however, this is not meant to suggest that inventory theory has been devoid
of practical application. In the Navy alone, a modest but nevertheless
impressive number of items are in fact being controlled on the basis of
results obtained from inventory theory. The fact that these items are
chiefly routine housekeeping items of relatively low cost should come as
no surprise. The results of inventory theory will never supplant skilled
judgment in dealing with items of high value and relatively low turnover
rate, for which demand is very difficult to predict. The purpose of research
in inventory theory must be considerably more modest, that is, to ration-
alize the large number of inventory decisions for routine, low-value items.

1. General Characteristics of Inventory Problems

Inventory theory is concerned with the analysis of several types of decisions
relating primarily to the problem of when to buy and how much to buy of
a given item. This analysis may involve consideration of when the item
should be manufactured, problems of transportation and distribution of
stock, and questions of repair, maintenance, and obsolescence. At times it
may be appropriate to consider several items simultaneously, e.g., in the
event that manufacturing or procurement costs cannot be factored into
separate costs.

We are, of course, interested in obtaining inventory policies that are
reasonable or optimal according to some appropriate measures of effective-
ness. A measure of effectiveness is essentially a method of summarizing
in terms of costs, probabilities, or related variables, the conflicting motives
for holding stock. Therefore, I shall begin with a list of reasons, either
for or against holding stocks, that have been discussed in the literature
on this problem.

(a) Inventories arc frequently held because of economies of scale in
production or procurement. If the average cost of purchasing stock decreases
as larger quantities are purchased, clearly it is economical to purchase in
relatively large quantities. The result is the accumulation of stock prior to
actual need. Consider a single piece of equipment or item of stock such
that 2 units can be purchased for a total cost of ¢(2). The average cost is
¢(2)/z, and if this is a decreasing function of 2, there will be a motive for
maintaining stock in advance of requirements.

A cost function of this type arises, for example, when there is a set-up
cost or an administrative cost associated with procurement, in addition
to a cost proportional to the quantity purchased. In this example we would
have
(K+c¢ 2 z2>0,

0 x=0,

=) =
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where K 1s the set-up cost and ¢ is the proportional or unit cost. This
type of cost function has appeared very frequently in the literature of
inventory theory not necessarily because of its realism, but because it
provides one of the few examples of cost functions with a decreasing average
cost for which the analysis of inventory policies is relatively easy. In
section 2, we shall examine some problems that involve a more general
decreasmg average cost function (such as that obtained by superimposing
various “price breaks”).

(b) The requirements for the items may vary substantially over time,
and this, itself, may serve as an incentive for holding stock. To make this
point somewhat clearer, consider the case of increasing average cost of
procurement. In this case, given a constant flow of requirements, there
will be no advantage to purchasing in large quantities, and hence no
inventories will be maintained. (This is, of course, in the absence of other
motives for holding stock.) In other words, given this type of cost function,
purchases will be made at a constant rate to satisfy requirements for the
item. On the other hand, if requirements vary sufficiently, a policy of this
sort may result in a very high marginal cost. It may be advantageous to
procure the item before it is needed at a lower marginal cost, thus con-
tributing to the formation of inventories. This motive for holding inventories
will be reinforced if the cost function displays decreasing average cost.

(c) Another motive for holding stock, in addition to the fluctuation of
requirements over time, is that the costs may themselves be functions of
time. For example, commodities may be held for the sole reason that the
anticipated rise in price will more than cover purchase costs plus the
cost of maintaining stock [more will be said about this latter aspect of
cost under (e)].

If the fluctuations in cost are predictable in advance, a good deal can
be said about the resulting inventory policies. The more important problem
in which future prices and costs are unknown has received relatively little
attention in the operations research literature, possibly because much of
this literature is concerned with the control of military items, where this
problem is not particularly significant.

(d) Uncertainty of future requirements is also a strong motive for
holding inventories. For an item that is essential or has considerable utility,
an uncertain future demand may result in higher levels of stock than would
be desirable if future demand were relatively predictable.

It has been customary when demand uncertainty is an essential part of
the problem to describe future demands by means of a stochastic process,
that is, in terms of the joint probability distribution of demand for sets
of future time instants. This, of course, requires us to assume a sub-
stantial amount of current information about the parameters describing
future demands—means, variances, correlations, etc.—and may involve
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excessively strong assumptions for items with little or no demand history.
Some attempts have been made to introduce @ priori distributions that
are successively refined as more and more demand data become available
(see Scarf [50], [S1], and Dvoretzky, Kiefer, and Wolfowitz [16]), though
this approach has not yet proved to be particularly fruitful.

If stockage decisions are made at regularly spaced intervals, such as at
the beginning of each week or month, then it is most natural to consider
the cumulative demand during such periods. In other words, we would
be concerned with a discrete sequence of random variables £, &,, ...,
where £, represents the cumulative demand during the nth decision period.
The simplest and most frequent assumption is that these demands are
independently distributed from period to period, and are specified by,
say, a cumulative distribution @, . The cumulative distribution, or its
density ¢,(£), may, of course, change over time, reflecting either periodic
fluctuations or more general fluctuations in the level of demand.

Independence of demand from period to period is undoubtedly a restric-
tive assumption, especially if the periods in question are of short duration.
It is probably correct to say, however, that the loss in realism is relatively
slight compared to the increase in ability to calculate inventory policies
based on this assumption.

Some work has been done recently in which the assumptlon of inde-
pendence has been relaxed. This work may be divided into two categories.
In one of these, demands are assumed to arise from a Markov process,
so that the level of demand, or “state” of the demand is dependent upon
the state in the previous period (Karlin and Fabens [35], Iglehart and
Karlin [27]). In the other approach, demands are assumed to arise from
a stationary stochastic process and few or no structural assumptions are
placed on the demand process. The increase in generality is balanced by
the fact that the results obtained are valid under a rather restrictive class
of cost functions (Holt, Modigliani, Muth, and Simon [24]). The techniques
involved in this latter approach are related to ‘“‘control theory’” and will
be discussed by Renald A. Howard in chapter 6 of this volume.

If demands or future requirements are uncertain, then regardless of the
stockage policy adopted there is generally some probability that available
stock levels will be insufficient to meet demand. Any of a number of courses
of action might be followed in this event. One possibility is to satisfy the
request by some alternative method of procurement, by a substitute part,
or by a higher level of assembly. Another possibility, if the need is not
very urgent, is to wait until sufficient stock becomes available through the
normal functioning of the supply system to satisfy the request. Still
another possible action is to delay the request for a fixed period of time
and then use an alternative method of procurement if adequate stock is
not yet available. In the formulation of a specific inventory model the
treatment of this problem necessitates a number of arbitrary assumptions.
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We are naturally led to make assumptions that will facilitate the analysis,
and produce simple policies, with the hope (which of course can be verified
by other methods) that the resulting distortion will not be too great.
As we shall see later, the most convenient assumption is that excess demands
or shortages are “backlogged,” i.e., permitted to wait until adequate
stock is available. Technically this means introducing the mathematical
fiction of negative stock levels to refer to the cumulative excess of unsatisfied
demands over the current stock position.

An inventory policy that permits large shortages to occur persistently
will gencrally be of little value. The advantages of keeping shortages at
a tolerable level must be weighed against the cost of maintaining high
levels of stock. Hence it would be convenient to describe shortages numeri-
cally in terms of costs or of probabilities. For the latter type of description
we might restrict our attention to those policies for which the probability
of at least one shortage is kept below a certain preassigned level. If, as
is customary, demands for the item persist over a long period of time, we
would then have to select probability levels for each of a number of periods.
If the demand distributions were changing substantially over time, the
procedure might involve a considerable degree of arbitrariness. Although
this approach has occasionally been utilized (see, for example, Proschan [47]),
it has been more customary to assume that the effect of shortages can be
described in terms of a shortage cost.

In some inventory models the appropriate shortage cost may be suggested
quite naturally. If, for example, shortages are satisfied by emergency
shipment, it would seem natural to use as a shortage cost the difference
in cost between emergency shipment and routine purchase. In a model
in which the items are being sold for certain prices, and in which sales
are lost if they cannot be met out of current inventory, the appropriate
shortage cost would be related to the loss in profit. In botl: of these instances,
shortages produce a real increase in cost or a decrease in revenue that can
be tramslated into an appropriate cost. There are models, however, in
which the cost implications of a shortage are by no means as immediate,
and the selection of the correct shortage cost becomes more difficult.
If, for example, excess demands are backlogged until stock becomes
available, the shortage cost must be determined by an analysis of the
implications of waiting for the particular item. In some instances the
shortage may not be a real cost, and may reflect only one’s judgment as
to the urgency with which an item is required when a demand is presented.

Consider the case in which the stock position is reviewed at the beginning
of a number of regularly spaced time intervals. The shortage cost is generally
assumed to be some function of the excess of demand over supply at the
end of a typical period. If the excess is u (¥ = 0), the shortage cost to
be charged will be, say p(u). The functions that have most frequently
been suggested are either a cost proportional to the size of the shortage,
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or a fixed cost to be charged at the end of any period in which there is a
shortage, regardless of the size. If the first of these functions is used with
the model in which excess demands are backlogged, shortage costs will
reflect not only the size of the shortage but also the actual duration.

Before concluding this discussion of random demands as a motive for
holding stock, I should like to say something about models in which
stock decisions are made continuously over time. In models of this type
the course of future demand must be described by a continuous-time
stochastic process. If we carry over the convenient assumption made in
the discrete-time model, i.e., that demand is independent from period
to period, we are led to consider stochastic processes with independent
increments. The Poisson process is an example of this type of stochastic
process. A more general example would be obtained by assuming that the
points of time at which demands are made are given by a Poisson process,
but that the size of demand at any of these time points is random. Most
of the elementary treatments of inventory models involving continuous
time are quite ambiguous on the point of just what stochastic process is
being assumed.

Occasionally other descriptions of the continuous-time demand process
are used. We may characterize the Poisson process by saying that demands
arrive one at a time, and that the times between successive demands are
independently distributed according to an exponential distribution. We
may generalize by assuming that demands arrive one at a time, and that
the times between demands have an arbitrary distribution. This type of
assumption is most conveniently made for the stationary analysis described
in section 4.

(e) Now let me turn to the motives for not holding inventories. If items
are to be held in inventory, they must be stored somewhere, and holding
or storage charges may be assessed against the stock. These charges may
be based on the cost of maintaining the stock in usable condition, the
cost of obsolescence, the cost of renting storage space, or the cost of
constructing new storage space. Holding costs may also be derived costs,
for example, costs implied by weight or volume limitations aboard a ship.

In a discrete-time inventory model, holding costs are generally assumed
to be calculated as some function A(u) of stock on hand either at the beginning
of the period, at the end of the period, or averaged throughout the period.
The most frequent assumption is that holding costs are proportional to
the quantity of stock held, though more general functions have occasionally
been used.

An interest rate provides a motive for not holding inventories if it
accurately reflects the return available from alternative uses of funds.
Here the advantages of investing in inventories today must be compared
with those of investing these funds in some alternative way and using
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these funds augmented by interest payments for purchases of stock at
some future date. In this respect the interest rate acts as a holding cost.
In fact, a number of studies have neglected holding costs completely,
with the interest rate providing the dominant motive for keeping inventories
down.

In an inventory problem that lasts for some length of time, costs will
generally be incurred at various moments of time, and we have the problem
of summarizing these costs in a single number so that alternative policies
can be compared. If funds can actually be borrowed and lent at a rate of
interest of { per period, then policies should be compared on the basis
of the discounted value of their costs, with a discount factor a=1/(1 +2).

(f) In most inventory problems the actual costs that influence the selec-
tion of an appropriate policy are those described above, i.e., production
and procurement costs, holding costs, and shortage costs. There are,
however, several additional motives for holding stock that are not directly
translatable into cost figures. For example, higher inventory levels would
generally be held if there is a substantial period of time between placing
an order for stock and its eventual delivery. This motive would not be
operative if future requirements were known precisely; orders could then
anticipate requirements. However, if future demands are random, the
possibility that shortages will occur during a lead time must be incorporated
in the analysis.

As another, somewhat similar motive for holding stock, consider a
situation in which inventories are stored in a warehouse and at several
using activities. Assume that stocks are sent from the warehouse to the
using activities, but that direct shipment among using activities is prohib-
ited. In this situation, high levels of stock might be kept at the warehouse
in order to postpone their commitment to the using activities.

2. Deterministic Inventory Models

In this section I shall discuss some of the work that has been done on
inventory problems in which all of the parameters-—costs, demand rates,
and so on—are assumed to be known in advance.

The most fundamental deterministic inventory model is the familiar
one that yields the Wilson lot-size formula as the solution (see Whitin [59]
for a discussion of the early development and applications of this result).
This is a continuous-time model in which purchases may be made at any
moment of time according to the cost function

- 12

The set-up cost K, which provides the motive for large, infrequent pur-



192 HERBERT E. SCARF

chases, must be weighed against the cost of holding inventories in choosing
the minimum-cost policy. Holding costs are assumed to be proportional
to the size and duration of inventories, and % is the proportionality constant
(in dollars per unit of stock, per unit of time).

Demand for the item (which is required to be satisfied) is assumed to
be known in advance and to occur at a uniform rate of m per unit of time.
In comparing policies, interest charges are usually neglected (or incorporated
directly into the holding cost), and the comparison is made on the basis
of average cost per time unit.

It is easy to verify that the only policies that need be considered are
those which place orders when there is no available stock (neglecting lead
times in delivery as is appropriate for this model), and which order the
same quantity whenever an order is placed. A single parameter Q, the size
of the order, is sufficient to specify the policy, and as a function of Q, the
average cost per time unit will be

mk 9
+Q+

The policy that minimizes this cost is the Wilson lot-size formula

0= \/ZKm

The model on which this calculation is based is highly simplified and
neglects a good number of the important reasons for maintaining inven-
tories. On the other hand, the formula given above provides a remarkably
good approximation to “optimal policies” in considerably more elaborate
and realistic models.

The Wilson formula represents a balance between economies of scale
in purchasing, and costs associated with maintaining inventories. It does,
however, make use of a particular cost function, and it is of interest to
examine optimal policies when this purchase cost is replaced by a general
cost function exhibiting economies of scale. Some work has been done
(see, for example, Churchman, Ackoff, and Arnoff [I0]) using a cost
function composed of several linear segments, while maintaining the other
assumptions given above.

In [58], Wagner and Whitin have described an -algorithm for the
solution of a considerably more general problem, in which the purchase
and holding cost functions are general concave functions, possibly
changing over time, and where the requirements, instead of being constant
as in the derivation of the Wilson formula, are permitted to vary in an
arbitrary fashion. In their model, decisions are assumed to be made at
the beginning of a sequence of regularly spaced intervals, which are num-
bered chronologically as periods 1,2,..., N. The purchase cost function
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relevant to period j is ¢;(z), and the holding cost to be charged on stock
at the beginning of the period j is A;(y). Requirements in the jth period
are denoted by #; . The objective is to find that policy which satisfies the
requirements and minimizes the sum of purchase and holding costs (if
there is an interest rate, the discounted sum can be introduced with no
additional complexity).

This problem can be treated as a special case of the stochastic inventory
models considered in section 3 (with the demand distributions degenerate
to a point, and with an extremely high shortage cost), and hence a solution
may be found by means of the dynamic programming procedures usually
used in this more general problem. The algorithm given by Wagner and
Whitin, while itself a dynamic programming algorithm, represents a
considerable simplification based on the following result: If ¢; and &; are
concave, there exists an optimal policy that makes purchases only at those
times when there is no stock. This theorem permits us to focus our atten-
tion on the moments of time at which purchases are made, rather than on
the quantities of stock purchased. The actual algorithm considers numbers
Cy,..., Cy, with C, defined as the minimum cost for a problem which
lasts a total of n periods and in which the requirements and costs are
identical with those in the first # periods of our original problem. These
numbers satisfy a very simple recursive relation of the dynamic program-
ming type, from which the optimal purchase or production plan may be
obtained.

One of the important generalizations of this problem, which has recently
been receiving some attention, is to consider several items, each with its
own pattern of requirements. The problem can be factored into the separate
consideration of each of the items if there are no joint constraints in pro-
duction. If, on the other hand, a single machine with a capacity limitation
is used to produce all of the items, then the individual production plans
obtained by the use of the Wagner-Whitin algorithm may not fit within
the capacity limitations, and new computational procedures must be
devised. Discussions of this problem may be found in Manne [40], and
in Gilmote and Gomory [22].

In the inventory models discussed above, the dominant motive for holding
inventories has been economies of scale in production. As I pointed out
in the introduction, inventories will also be held with increasing marginal
costs of production if the requirements are sufficiently fluctuating over
time. The problem becomes one of smoothing production rather than
one of taking advantage of economies of scale.

The basic production-smoothing problem is that in which a sequence
of requirements are to be met, and the production cost functions (%)
and the holding cost functions A;(y) are convex (increasing marginal cost).
This problem has been studied by a number of authors, using techniques
ranging from the calculus of variations to linear programming. The
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fundamental paper on this problem is due to Johnson [28], who develops
an exceptionally simple algorithm.

In describing Johnson's algorithm it is useful to assume that require-
ments and possible production levels can all be expressed as multiples of
some common unit. The algorithm proceeds as follows: Let the requirements
of the first period be satisfied by production in that period, with the
understanding that if #; units are required in the first period, the smallest 7,
marginal costs will be assigned to their production. Take the remaining
marginal costs arranged in increasing order and add to them, one by one,
the marginal costs of storage, arranged in increasing order. This provides
a list of marginal costs available for satisfying requirements in period 2.
Of course, requirements in period 2 may also be satisfied by production
in the second period, providing us with an alternative list of increasing
marginal costs. If the two lists are combined and arranged in increasing
order, we obtain the actual production function available for satisfying
requirements in period 2 and subsequent periods. The process is then
repeated; the smallest #, marginal costs are eliminated from this list,
marginal holding costs are added, and the list is combined with the
marginal costs of producing in period 3, and so on.

A simple modification of this argument will cover the case in which
arbitrary quantities of the firm’s output can be sold in a competitive market
at fixed prices, so that the problem becomes one of scheduling production
and sales. The procedure has also been extended by Wagner [55] to cover
the case of a monopolist setting prices in addition to making production
decisions, under an appropriate assumption as to the elasticity of demand.

Johnson’s procedure depends crucially on the assumption of increasing
marginal costs of production and storage. It will not apply, for example,
to the problem in which there is a cost associated with changing the level
of production from one period to the next. This latter problem, with an
arbitrary schedule of requirements, linear production cost and storage
cost functions, and a cost proportional to the increase in production (no
cost is charged if the production level decreases), has been examined by
Johnson and Dantzig [29]. The problem is posed in linear programming
terms, and is solved by means of a simplified version of the simplex method.
A modification of this problem in which the item is perishable and conse-
quently cannot be stored has been discussed in a discrete-time version
by Karush and Vazonyi [38] and in a continuous-time version by Arrow
and Karlin [2].

3. Stochastic Inventory Models

In this section I shall begin to discuss inventory models that explicitly
take into consideration the possibility of uncertain future demand. For
the moment I shall restrict my attention to models in which decisions are
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made at the beginning of each of a number of periods, and in which the
demand distributions are independent from period to period. The cumu-
lative distribution for demand in period » will be denoted by @,(£), with
the subscript omitted if demands are identically distributed. There is a
certain ease in exposition if it is assumed that the demand distributions
have density functions ¢,(£), and I shall consistently make this assumption
even though the calculations of optimal policies, which are invariably done
on a digital computer, involve using a discrete distribution.

The simplest model of this type involves a single period. Assume that
¥ units of stock are purchased at the beginning of the period for a total
cost of ¢ - y, and that a random demand ¢ is given at the end of the period.
The quantity sold will be the smaller of y and ¢, and if the selling price
is p, expected profit will be

—cyp | taOd +py [ ole)dt

It is easy to verify that this function is concave as y ranges from zero to
infinity; the maximum is therefore obtained by setting the derivative
equal to zero (if p > ¢), and we see that the optimal value of ¥ should

satisfy the equation
S=] eo &
v

This solution may be found in Whitin [59] and in Arrow, Harris, and
Marschak [1].

This model is, of course, superficial. It does, however, provide a point
of departure for the discussion of more elaborate inventory models. The
negative of the above expression may be considered an expected cost
(in the sense that we would like to minimize it), and may be written as

cytp €=l de—pm,
v

where m is the mean of the demand distribution. Only the first two terms
are relevant in minimizing this expression. The first term is the cost of
purchasing y units; the second term is equal to the selling price multiplied
by the expected excess of demand over supply. In other words, the second
term may be looked upon as an expected shortage cost, with the shortage
cost function proportional to the number of shortages. With this inter-
pretation, our original problem becomes onc of minimizing the expected
cost of purchasing and shortages.

Several generalizations come to mind immediately. There may be situa-
tions other than the one described above in which a different shortage
cost function is appropriate. This would mean replacing the second term
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by f P& — v)p(§) d¢, with a possibly non-linear shortage cost function.
On the other hand, it might be reasonable to charge other costs, such as
holding costs, durmg the period. If the holding costs arc charged at the
beginning of the period, an additional cost 4(y) would be added. If the
holding cost were charged at the end of the period, on the basis of the excess
of supply over demand, the additional term would be f Ay — E)p(€) dé
It is convenient to mtroduce the notation L(y) to represent the expected
holding cost plus shortage cost during a period if the initial stock is y.
The problem is then to select ¥ so as to minimize ¢ - y + L(y), and if
sufficient regularity conditions are assumed, the solution is given by

c+L'(y)=0.

In the case in which both the holding cost and the shortage cost are linear
(holding cost charged at the end of the period), this equation becomes

c 4 h

1—@(y)=P+h.

Single-period inventory problems are of relatively little importance by
themselves. There are, however, a number of instances in which the single-
period problem is looked upon as the last period in a dynamic model.
The important distinction is that we no longer consider the initial inventory
before placing an order to be equal to zero, but permit it to be an arbitrary
size x. If ¥ represents the level to which stock is raised, the expected cost
will now be given by

oy —x) + L)

I shall at this point and for the remainder of the paper consider the case
in which y must be greater than or equal to x. The other possibility, which
involves the disposal of stock, has been considered by Fukuda {18] and
others, in both the dynamic and single-period models.

The problem is then to select ¥ = x so as to minimize ¢(y — x) + L(y).
The optimal choice of ¥ will, of course, depend on &, and those assumptions
on both L and ¢ which give a simple form for the optimal policy have been
extensively investigated.

If the purchase cost function is linear, and if L(y) is convex (this will
occur if the holding and shortage cost functions are linear, and in many
other cases as well), the optimal policy will be of the particularly simple
form characterized by a single “critical number” % The value of % 1s
determined from the equation ¢ 4+ L'(%) = 0, and the policy 1s to raise
the stock to £ if it is initially below this level, and not to order if the stock
is above £ Examples have been given in which considerably more complex
policies occur if the convexity assumption of L(y) is dropped. For example,
if a constant shortage cost is charged independently of the size of the
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shortage, L(y) may not be convex and the resulting policy may involve
several regions in which orders are alternately placed and not placed.

The next problem, as far as complexity is concerned, is that in which
the purchase cost function involves a sct-up cost K in addition to the
linear cost function ¢+ x. Again, if the expected holding and shortage
cost function is convex, the resulting optimal policy has a simple form
based on two numbers S and s. The policy is to raisc the stock to S if it
is initially below s, and not to order if the stock is initially above s. Consistent
with the economies of scale in purchasing, small orders will not be placed.
The minimum order size is § — 5, which will generally be greater than
zero unless K = 0, in which case the policy is identical with that given
above. For the single-period model, S is determined by the equation
¢+ L'(8)=0,and s by es + L(s) = K 4 ¢S + L(S).

For example, if the holding and shortage cost functions are linear and
if the demand distribution is exponential with mean m, the equations for
S and s become

cth Q/im — K g
p+h’ and 9/ _m(c+h)7+m+l’

=Sl —

where O = S — 5. If K is small, then Q will be small and the left-hand
side of the latter equation may be approximated by the first several terms
of its Taylor series expansion, with the result that
2Km
eNTTE
This suggests a relationship between the minimum order size and the
Wilson lot-size formula, which occurs repeatedly in inventory theory.

If the convexity assumption on L(y) is dropped, the optimal policy may
be considerably more complex than an (S, s) policy. Karlin [33] thoroughly
analyzes the types of optimal policies implied by various forms of the
holding and shortage cost functions and demand distributions.

It is also possible, in the single-period problem, to determine the form
of the optimal policy if more general purchasc cost functions are considered.
The difficulty is that the results do not apply to multiperiod models,
whereas the results for the two cost functions discussed above can, in
fact, be generalized. If one takes the point of view, as I do, that the single-
period problem is insignificant compared to the dynamic problem, there
is little point in discussing these extensions.

Let me now turn to those models which continue for a number of periods,
and in which purchases can be made at the beginning of each of the periods.

The following assumptions, a number of which will be relaxed later, will
be made in the present discussion.
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. A single item is being considered. The item may be ordered at the
beginning of various time periods; the purchase cost function is given by
o(2).

2. Demands for the item are independent from period to period, and
their density function is @(£).

3. Delivery of stock 1s immediate.

4. Excess stock is backordered—this is, of course, a minor assumption
when there is no lead time in delivery.

5. The expected single-period costs, if the stock level at the beginning
of the period is y, will be L(y).

6. No disposal is possible.
7. The discount factor is «, between zero and one.

8. The problem will persist for a total of N periods. It is convenient
to label the periods in the reverse order from the chronological order.

An inventory policy is a set of rules that define the quantity to be pur-
chased at the beginning of each period as a function of whatever informa-
tion has accumulated up to that time. Because of the nature of the problem
and the assumptions that have been made, it is sufficient to consider
purchasing rules that depend only upon the stock size at the moment of
time in question. More elaborate policies are required if some of the
assumptions are relaxed.

Any specific purchasing policy will generate a random sequence of costs,
the randomness being caused by the uncertainty of future demand. We
are interested in calculating those policies (optimal policies) which minimize
the expectation of the present value of these costs.

By appropriately identifying and relabeling the quantities involved, we
can usually transform programming problems that involve time into
problems in which only one decision is made. The possibility of converting
dynamic problems into static problems is implicit in the literature of
economic theory, and has been recognized explicitly in game theory and
statistical decision theory. Especially when uncertainty is involved, the
resulting static problems are quite complex and almost useless for cal-
culating optimal policies or even for discussing their general form. On the
other hand, the static problem may be quite useful for the purpose of
proving existence theorems and examining related questions. For the
inventory problem, this approach was taken by Karlin in [30].

The alternative approach is to utilize the fact that sequential decision
problems may be split into two parts-—the current decision and all sub-
sequent decisions—and to obtain an iterative sequence of functional
equations whose solution yields the optimal policies. This technique,
which Bellman [7] has used to form the basis of dynamic programming,
also has a history in economic theory, game theory, and statistical decision
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theory. In the context of the inventory problem, the technique was first
introduced by Massé [42] and by Arrow, Harris, and Marschak [1] (with
a restriction to (S, s) policies), and was then examined with complete
generality by Dvoretzky, Kiefer, and Wolfowitz [15].

The dynamic programming technique for the solution of inventory
problems proceeds in the following way. We consider an inventory problem
that begins with an inventory of x units of stock and lasts for a total of
n periods. If an optimal policy is used, the minimum of the expected
discounted costs will be a function of x and #, which I shall denote by
C,(x). This cost may be divided into two parts, the costs incurred in period
n, and the expected future costs. If a decision is made to raise stock from
x to vy in period n, there will be a purchasc cost of size ¢(y — x) and a
single-period cost L(y). At the beginning of period #» — 1 the inventory
will be y — ¢;if we proceed optimally from this period onward, the expected
future cost will be

x |7 Cosly — Ep(e)

The purchasing decision 3 should be made so as to minimize cost,
and we obtain the well-known functional equation of inventory theory

Cl) — min oy =) +L0) 4 [ Coly — D(0) .

This equation (or variants of it), which may be programmed on a digital
computer, provides a very eflicient procedure for calculating optimal
policies. The algorithm is not only rapid, it is also quite flexible in the sense
that all costs and demand distributions may vary over time (this would
involve introducing subscripts on thesc parameters in the functional
equation).

There are several cascs in which the functional equation can be analyzed
and the form of the optimal policies determined. There is, of course,
considerable appeal in knowing that a simple policy, such as a single
critical number or an (S, s) policy, is optimal; simple policies are, naturally
enough, easy to implement. In addition, the time necessary to compute
optimal policies may be cut substantially if it is known beforehand that
the policy has a particular form.

The first analysis of the inventory equation whose purpose was to
determine the form of the optimal policy was given by Bellman, Glicksberg,
and Gross in [8]. In that paper the purchase cost is assumed to be linear,
there is no set-up cost, and the holding and shortage cost functions are
also linear (actually the last requirement may be replaced by the considerably
weaker assumption that L(y) is convex). It is then demonstrated that the
optimal policy is defined by a sequence of critical numbers &, , £, , ...; if
the stock level at the beginning of period z is below %,, an order for the



200 HERBERT E. SCARF

difference is placed. No ordering is done during this period if the stock
level exceeds %, . The proof is quite simple and depends only on verifying, by
induction, that the functions C, (x) are convex. The main tool is the simple
fact that if f{x) is convex and bounded from below, g(x) = min, ., { )}
is also convex.

The argument is quite general in the sense that the demand distributions
and costs may vary over time. If, however, these are assumed to be un-
changing over time, it is quite easy to show that & < £, = &%, ..., so that
the critical numbers are increasing monotonically as we move away from
the end of the program. It is also possible to show that &, < % with %
defined as the solution of the equation

ol —a) + L& =0.

The number % has a specific interpretation, which I shall defer until later
in this section,

If a set-up cost in purchasing is introduced, the situation becomes
somewhat more complex. Recall that for the single-period problem the
optimal policy would be of the (S, s) type if L(y) were assumed to be
convex. This result could easily be demonstrated for the dynamic problem
if it were possible to demonstrate inductively that the functions C,(x)
were convex, even in the presence of a set-up cost in ordering. Unfortunately,
this is never the case, and a different argument is required. In [52] Scarf
introduced the class of K-convex functions. A function is K-convex if
the secant line, when extended to the right, is never more than K units
above the function, or in analytical terms if

for @)~/ - o [fOIE ] ez

for a 20, 6 =0, and all ». For K = 0, this reduces to the ordinary
definition of convexity. It is then shown inductively that each of the C,(x)
is K-convex, and it follows immediately from this result that the optimal
policy in period 7 is defined by a pair of numbers (S, , s,). The main tool
of the proof is the fact that if f(x) is K-convex, then

&) = min | Ky — ) +10)]

is again K-convex, where 8(x) = 1 if « > 0, and 8(z) = 0 if # = 0.

Again this argument is quite general and permits the costs and probability
distributions to change over time. The only restriction is that the set-up
costs do not decrease as we move away from the end of the program. It
is possible, given decreasing set-up costs, to obtain optimal policies of a
more complex sort.
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Very little is known about the relationship of the polides (S, , s,) in
different periods, even if it is assumed that all costs and demand distribu-
tions are unchanged over time. The fragmentary results that are known
are due to Iglehart [26]; they suggest that the relationship will by no
means be simple.

In introducing the basic functional equation, explicit use was made of
the assumption that orders are delivered instantaneously. The assumption
is a questionable one, since in reality there will generally be a lag in
delivery. Perhaps the most common case is one in which the delivery lag
is random, It is easier, however, to begin with the assumption that the
delivery lag is of fixed length and is equal to an integral number of periods.
Specifically, let us assume that an order placed at the beginning of the
present period will be delivered at the beginning of the period, A periods
from now. It is possible to write a functional equation as before—the
difficulty is that the functions involve A variables, current stock x, and
orders y; (=1, 2, ..., A — 1) due in the subsequent A — [ periods. Even
with a lead time of four or five periods, the recursive calculations involved
in the calculation of optimal policies would be prohibitively long.

Karlin and Scarf [36] showed that if excess demands are backlogged,
the functional equation can be reduced to one involving only a single
variable. More specifically, if C,(x, ¥, ... ¥,_;) represents the expected
discounted cost for an z-period problem if an optimal policy is followed,
then

Clos o yama) = 1) -+ [ L 31— O0)

A-1

ottt L (x+2y, E)pr® a8 + 0 (v + 3 1) |

1

where g, (u) satisfies the functional equation

ea) = min oy — ) + o [ Ly — O dt + [ gualy — 9(6) ]

v=u

(we are using the notation ¢; to represent the density of demand over j
periods), and moreover the optimal policy is determined from this latter
equation, with u representing stock on hand plus total stock on order.
Other than replacing L(y) by a‘f Ly — &)@:(€) d¢, this equation is
identical with the zero lead time equation, and therefore all of the theory
developed for the special case of zero lead time is applicable in general,
if we backlog.

The backlog assumption enters into this simplification by providing
us, at any moment of time, with a horizon with two properties: (i) No
action taken now will influence any costs before the horizon, and (ii) all
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costs after the horizon are functions of stock on hand plus stock on order.

There are other lead-time models for which horizons with these proper-
ties could be found, and which would therefore result in a corresponding
simplification of the functional equation. One example is the case in which
the lead times are random, but at most one outstanding order is permitted
at any moment of time. Another involving random lead times is the case
in which outstanding orders ‘“queue up” before being delivered. The
case of no backlog does not fall into this category, nor do cases in which
the lead times for the various orders are obtained by independent ran-
domizations, with some possibility that orders will be delivered in a
sequence other than that in which they were placed.

This treatment of delivery lead time has a number of drawbacks. One
of them is that backlogging is required, and it may be quite unrealistic
to assume that customers are willing to wait indefinitely until their requests
are satisfied. There may be some hope in analyzing a modified problem
in which excess demands stay on the books for a fixed number of periods,
after which they are canceled. Another deficiency is that this treatment
does not permit the possibility of purchasing shorter lead times at higher
cost. In chapter 2 of this volume, Daniel analyzes a model that involves
a routine lead time of a single period, and an instantaneous emergency
alternative that supplies items at a higher unit cost.

Now I shall turn to a problem considered by a number of the authors
cited above; that is, the inventory problem in which all costs and probability
distributions are unchanged over time and the length of the program tends
to infinity. It will be convenient in this section to restrict attention to the
case in which the discount factor is strictly less than one. Corresponding
questions when a = 1 will be considered in the next section.

In an infinite-period inventory problem of this type, the situation faced
at the beginning of a period will differ from that at the beginning of the
next only in the size of current stock levels; we shall, of course, be no
closer to the end of the program. This suggests that we consider only one
minimum cost function €(x) with no subscript indicating dependence
upon the length of the program, and that C(x) should satisfy the functional
equation

Cx) = min |y — 0 +10) +a [ Ol — ote) o]

This equation is more complex than the ones previously discussed,
inasmuch as the same function C enters on both sides. The questions that
come to mind are: Is there a unique solution to this functional equation,
and how is it related to the functions C,(x); what are the optimal policies
assoclated with this equation, and how do they relate to the policies pre-
viously discussed ? The answers to these questions have a certain technical
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difficulty, since the variable x ranges over the infinite interval. 1f it were
possible to restrict both x and y, or merely the difference between x and y,
to a finite interval, the general techniques described by Bellman [7] and
Karlin [30] would be adequate to answer the question of the existence and
uniqueness of C(x). If we do not choose to make this a priori restriction,
the following type of analysis is available. First of all, it is easy to verify
that the functions C,(x) are monotonically increasing and bounded from
above, so that they converge to some function f(x). It is also simple to
verify that f(x) satisfies the inequality

fo =i

inf Jey %) +L0) o [ fir - ol .

In order to establish the reverse inequality, we generally need some addi-
tional information concerning the optimal policies for the finite-period
problem—namely, the existence of some number X such that no ordering
takes place at the beginning of any finite-period problem if the initial
stock is above X, and that Ci(x) — f(x) = — 4 for all x £ X, with some
finite constant 4. For the case in which L(y) is convex and the ordering
cost 1s composed of a set-up cost plus a unit cost, these results have been
established by Iglehart [26]. It is then a relatively simple matter to verify
inductively that

Cle) —f(2) = —av 4 (¢ £ X).

This result is sufficient to show that f(x) satisfies the equation

1) = min }ely — ) +LO) + o [ S — D) a2

Then, under suitable assumptions, we may demonstrate uniqueness of
this solution and then identify f{x) with C(x).

If the functions C,(x) are convex, C(x) will be convex; if they are
K-convex, C(x) will also be K-convex. Therefore, if the ordering cost is
composed of a set-up cost plus a unit cost, the optimal policy for the
infinite-period problem will be an (S, s) policy, which degenerates to a
single critical number % in the event that K = 0. It is a simple matter to
show that & is given by the solution of the equation

ol — o)+ L'(#) =0,

which will be unique if L 1s strictly convex (say, with a strictly positive
second derivative).

If the finite-period calculations are thought of as being an approximation
to the infinite-period calculations, then it is of interest to relate the optimal
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policies of the finite-period model to those described above. In practice,
optimal policies seem to converge quite rapidly. Our theoretical information
on these points is, however, quite scanty. If K = 0, it is possible to
demonstrate that

2c
:m:

— X — &
lim 2
-0 ot

so that convergence of the critical numbers is geometric. (This result
should be compared with the corresponding one in section 4 with an
interest rate of zero.) If the set-up cost is positive, the analysis is hampered
by the fact that we have no information on the behavior of S, and s, as
functions of time. It is not even known, for example, whether these numbers
converge as n tends to infinity, though numerical calculations suggest
that 1t is reasonable to conjecture that they do.

All of these results extend directly to the case of a time lag in delivery,
if excess demand is backlogged. In particular, if the set-up cost is zero,
the optimal policy for the infinite-period problem may be obtained directly
by solving the equation

C(l — oc) + o L;.—;-l(x) =0,

where L;,1(y) is the expected holding and shortage cost over A + 1 periods
of demand.

There are examples other than those discussed above in which an infinite-
period inventory model has a relatively simple solution. Iglehart and
Karlin [27] consider the following demand process: At the beginning of
each period the system is assumed to be in one of 7 states, with the transition
from period to period governed by a Markov process. If at the beginning
of a period the system is in state 7, the demand density for the period
will be given by @,(£). By varying the transition law for the Markov
process, one may obtain a variety of inventory models, including,
for example, cyclic fluctuations in the demand distributions. An algorithm
for the optimal policy that involves the recursive solution of at most !
equations is presented. (Generally far fewer than n! equations will suflice.)

I should like to mention one additional example before concluding this
section. Karlin [34] has noticed that if the demand distributions are
stochastically increasing over time (j @, (&) d§>j @, 41(€) d&, with the
subscript referring to the demand distribution relevant in period # counting
from the beginning of the problem), the optimal policy in the first period
will be identical with the first-period optimal policy for a problem in
which the demand density is ¢, throughout. This idea is used to establish
a number of interesting results involving demand distributions that are
stochastically fluctuating over time. In chapter 4 of this volume, Veinott
gives a number of rather surprising results of this same sort. For example,
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if the demand distributions are all translates of a given distribution, the
optimal policy in the first period is independent of precisely which translates
are used in the subsequent periods.

4. Stationary Inventory Models

Section 3 described the use of recursive calculations or dynamic pro-
gramming techniques in obtaining optimal policies for the finite-horizon
inventory problem. These techniques have much to bé said in their favor;
they are quite flexible, and if knowledge of the specific forms of the
optimal policies is incorporated in the computing codes, they are sur-
prisingly rapid. For example, the computing time involved in the calcula-
tion of optimal policies for a twenty-period inventory problem, where the
demand distribution in each period can take on, say, forty possible values,
will be somewhat over one minute even on a slow machine such as the 650.

In a certain sense the speed of these calculations means that the inventory
problem involving a single item stocked at a single installation has been
solved. On the other hand, the dynamic programming approach provides
us with no information about the dependency of optimal policies on the
many parameters involved in the model or about the sensitivity of costs
as a function of the policies. This type of information may often be obtained
from the probabilistic approach to be discussed.

Another reason for the techniques discussed in this section is that
frequently optimal policies are not really required. For low-cost, high-
turnover, routine items (and these are the items to which inventory theory
can most successfully be applied), it is generally sufficient to obtain some
relatively simple analytic approximations to optimal policies; and these
may be obtained more naturally from a stationary approach than by the
analysis of functional equations.

As 1 shall also indicate in this section, many of the apparently different
techniques involved in the stationary analysis of inventory problems are
closely connected.

The fundamental observation, which permits us to analyze inventory
problems from a probabilistic point of view, is that, given the assumptions
that we have generally been making and the use of a fixed policy, the stock
levels will frequently be described by a Markov process with stationary
transition probabilities (see Massé [42], [43]). Any number of examples
will illustrate this point. I shall begin with an example close to the models
described in the previous section.

Consider a single item which can be ordered at the beginning of each
period and for which delivery is immediate. Demands for the item will be
independently and identically distributed in various periods with the
common density function p(¢), and excess demands are to be backlogged.
Now let us assume that a specific (S, s) policy has been adopted for use
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in all periods. If the stock size at the beginning of the first period is some
specific value, then, because of the randomness of demand, stock sizes
at the beginning of subsequent periods will form a sequence of random
variables &, , x5, ... . If &, is known, it is easy to obtain the possible values
for x, ., and their associated probabilities. Let ¢ be the random demand
during the nth period. If x,, > s, no order will be placed during this period,
and x, ; = x, — & On the other hand, if x, <<s, the stock level will
first be raised to S, so that x,,, = S — &

The sequence of stock levels is therefore a Markov process, and since
we are assuming that demands arise from the same distribution in different
periods, the transition probabilities will be stationary in time. The stock
size at the beginning of the nth period will have a density function f,(x)
related to f,_; by the typical recursive relationships of Markov processes.
Generally, this sequence of densities will converge, as n tends to infinity,
to a limiting density f(x). The interpretation is that if the stock size is
examined at the beginning of a particular period, it will be a random
variable with the density function f{x), if the process has been going on
sufficiently long.

Purchase costs and holding and shortage costs will be accumulating from
period to period. If the interest rate is zero, so that the discount factor is
one, the present value of these costs during the first # periods will be equal
to the total cost during these periods and will tend to infinity as # tends to
infinity. On the other hand, the average cost will tend to a limit that
depends not only on the parameters describing the costs, but also on the
specific (S, s) policy used, and it may therefore be used as a basis for
comparing various (S, 5) policies.

It is quite easy to calculate the long-run average cost per period once
the limiting density function is known. For any given stock level x, we
write the expected purchase and holding and shortage costs during the
period, and then take the expectation of these costs with respect to the
distribution of initial stock x. For example, suppose that the purchase
cost is given by K 4 ¢ - 2, and the expected holding and shortage cost
during the period by L(y). If ® > s, no ordering will be done and the
expected total cost during the period will be L(x). On the other hand, if
x << s, an order of size S — x will be placed; hence the total expected
cost during the period 1s K + oS — x) + L(S5), and we obtain the
following formula for the long-run cost per period:

S ] 8
f L)) dx 4 [K +eS + LS | flyde —c [ af(x)dx.
3 v —ac v —

This approach can be used in many different formulations of the
inventory problem, formulations involving, for example, lead times in
delivery which may or may not be random, continuous-time rather than
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discrete-time models, and policies that are not (S, s) policies. In all cases
the problem is to determine f(x), the limiting density for stock size.

For the particular model that I have been discussing, the determination
of f{x) makes use oi that branch of probability theory known as renewal
theory, and it will be appropriate to describe some of the elements of renewal
theory at this point. For a more elaborate exposition the reader is referred
to Karlin [31], [32], and to some of the references listed in these papers.

Renewal theory is concerned with the following type of problem:
Consider a piece of equipment that has a random failure time with a
cumulative distribution @(t). The equipment is installed at time zero and
as soon as it fails it is replaced by a substitute whose failure time is inde-
pendent of that of the first item, and is identically distributed. The process
is continued with replacements being installed whenever a failure occurs.

In the inventory problem the failure-time distribution is to be identified
with the demand distribution in a fixed period. A typical problem in inven-
tory theory is to determine the distribution of the number of periods
between successive orders, which is the same as determining the distribu-
tion of the number of observations from @ until the sum first exceeds
O = S — 5. The related problem in renewal theory is to determine the
distribution of the number of replacements in a fixed length of time ¢.
Another problem in inventory theory, related to the calculation of shortage
costs, 1s to find the distribution of the amount that accumulated demands
cause stock to fall below s the first time they do so. In renewal theory the
related problem is to determine the “excess” distribution, or the distribu-
tion of the time by which the first failure after ¢ exceeds t.

The probability of n failures between O and ¢, p,(¢), may be written as

pn(z) [ @(n)(t) . (D””“(t),

where @(¢)=1 and @™ is the n-fold convolution of @(¢). In the partic-
ular case in which failure times are exponentially distributed with a mean
m, the number of failures between 0 and ¢ has a Poisson distribution with
a mean of #/m. In the general case, the mean of the number of failures
in (0, t), which we denote by M(¢), is not given by the simple form ¢
divided by the mean time between failures.

The quantity M(¢) is of particular importance in renewal theory, and
may be calculated in several ways. One procedure, which is generally not
too effective, is to use the relationship

M(t) = Edwn(z).

A somewhat better procedure is to observe that M(z) satisfies the funda-
mental equation of renewal theory, i.e.,

Mty = o) + [ MGt — &) dog)
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If @ is itself a convolution of exponential distributions (or in the case
corresponding to discrete stock sizes, a convolution of geometric distribu-
tions), the renewal equation may be converted to a finite system of linear
differential (or difference) equations with constant coefficients, and may
therefore be solved quite readily. If the failure-time distribution has a
density ¢(f), it is frequently useful to introduce m(t) —= M'(£), which
satisfles the equation

me) = ot0) + [ mlt — ol6) de.

A third procedure for solving the renewal equation is to use Laplace
transforms, which is quite natural, since the renewal equation involves
convolutions.

Although M(¢) is generally not equal to #/m (m is the mean time between
failures, or the mean demand per period in the related inventory problem),
this relationship is asymptotically correct. In other words,

lim I—K(—I) = 1—
[ 4 m

An even stronger theorem, due to Blackwell [9], states that

lim M(z + h) — M(t) = %

’
[

as long as @ is not a “lattice distribution.” Very useful generalizations of
Blackwell’s theorem are known, but I shall not consider them in this paper.

The general implication of these theorems is that M(z) is approximately
linear for large . For inventory theory this means that if the set-up cost,
and consequently (), are large, optimal policies may be expected to approxi-
mate those in which the demand density is exponential. T shall come back
to this point after a word about the excess distribution.

Let A(t, x) represent the density of the excess distribution, i.e., the
time by which the first failure past ¢ exceeds ¢. The variable of the distribu-
tion is %, and ¢ is thought of as being a parameter. If the renewal function
M(t) is known, A(¢, x) may be expressed conveniently as

t
h(t, x) = gt + x) + f ot +x — Eym(g) de .
0
As 7 tends to infinity, the renewal density tends to a limit given by
1~ ®x)

fim ) = =

Now let me turn to the application of renewal theory to the inventory
problem. As I remarked before, the important problem is that of deter-
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mining the limiting distribution of stock size f(x). I have indicated above
the transition probabilities for stock size viewed as a Markov process.
As is customary in the study of Markov processes, this permits us to write
a recursive relationship for f, which in this case becomes

) = ¢S —w) f s_wf(x) dx + f F)p(ax — u) dx

The solution of this equation can be expressed in terms of the renewal

function as follows:

m(S — x)

T+ Q) =r=s
Q

WS —3) - [y mEeS —x— &
1+ M(Q) -

flx) =

Note the similarity between the second part of this expression and the
corresponding formula for the excess distribution.

Using this expression for the limiting distribution of stock size, we can
write the long-run average cost per period as

KAL)+ 718 — wym(x) dx

I+ MQ)

which may then be minimized as a function of Q and S to provide us with
the optimal policy. This formula may be found in Arrow, Harris, and
Marschak [1]. A large number of numerical examples based on a discrete
stock analogue may be found in Wagner [57].

1 shall now indicate what these formulas become in the special
case of an exponential demand distribution [p(é) = Ljm(e~¢/™)]. The
limiting distribution for stock size is given by

1

Py sEx=E S,
f(x) - el@—s)/m

—_— x < S

m 4+ Q ’

and the long-run average cost per period, assuming linear holding and
shortage costs, the former charged at the beginning of the period and the
latter at the end, is

(‘m—|— [Km+hsm+th—|—h:Q+ 4% —|—mpe“”].

+O

In order to find the optimal policy we set the two derivatives, with respect
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to Q and s, equal to zero, and obtain the following remarkably simple
expressions:

0— ’\/21}(;"2! e sim — g (1 4 %) .

The first of these expressions is, of course, the Wilson lot-size formula,
and I, for one, have always found it surprising that the Wilson formula
should appear in so many different areas of inventory theory. Another
interesting point is that the expression for Q is independent of the shortage
cost.

If we depart from the exponential distribution, or from the zero lead
time problem, the expressions given above are no longer correct. I have
mentioned, however, that for large values of the set-up cost, the limit
theorems of renewal theory suggest that the distributions may be approxi-
mated by exponential distributions, and we may therefore expect to find
approximations similar to the exact expressions given above. This point
has been examined by Roberts [48], using a general demand distribution,
linear holding and shortage costs, and an arbitrary lead time A with the
backlog model.

In Roberts’ study it is necessary to take large values of both the set-up
cost and the shortage cost. Itis shown that Q and s may be approximated by

j .
O~ and  p [ (€ gia(6) de ~ VIR,

Again we see that Q is given approximately by the Wilson lot-size formula,
independently of the shortage cost. If a more refined approximation is
desired, it is necessary to add to the expression for Q a correction term
involving s, and therefore involving the shortage cost to a slight degree,

These approximations are remarkably good, even for moderately small
values of K and p; moereover they seem to be good approximations to the
limiting optimal policies in the dynamic programming calculations. This
is true even if there is an interest rate involved in the dynamic programming
formulation ; as long as the interest rate is not too large, the above formulas
are applied, with the holding cost increased by the interest rate times the
unit cost.

Table | compares the value of O obtained by means of dynamic program-
ming with that obtained from the Wilson lot-size formula. In these examples
a geometric distribution is used with an interest rate of zero, and holding
and unit costs of one. The agreement is remarkable, even without the
corrective second order term for Q.

The comparison for s, although not as close as that for O, is sufficiently
good to suggest using these approximations if the dynamic programming
calculation involves a long horizon.
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TABLE 1
}
Mean i Lead | Shortage Set-up Dynam. Wilson Q
time ‘ cost | cost prog. Q
- - I i

4 0 \ 30 4 ' 6 5
4 6 ; 1000 100 29 28
1 6 ‘ 1000 ‘ 100 15 14
4 ‘ 6 ; 1000 ‘ 4 7 5
4 ‘ 6 100 ‘ 100 31 28
1 i 4 : 100 | 100 16 1 14
4 ! 2 i 100 100 30 28
1 : 4 30 1 100 ; 15 14
4 6 100 | 4 8 S
1 ‘ 4 30 4 4 2
.25 ; 6 160 4 2 1

‘ ;

These calculations are based on the steady-state model of this section,
which has been selected as the stationary analogue of the dynamic pro-
gramming model of section 3. Other stationary models that involve
continuous review of stock, discrete stock levels, random lead times, and
policies other than (S, s) policies have been suggested by a number of
authors. I shall say a bit about some of these other models, but first I
should like to indicate another aspect of the close connection between the
model of this section and the dynamic programming model. As we shall
see, these remarks are related to some other techniques for solving inven-
tory problems.

In the stationary approach we select a particular (S, s) policy, calculate
the long-run costs based on this policy, and then select the policy variables
so as to minimize long-run cost. Let the minlmum cost be denoted by &.
In the dynamic programming approach, the technique depends on the
minimum cost functions C,(x) and the functional equations of section 3.
If the interest rate is zero, then as # becomes infinite, C.(x) will tend to
infinity. It seems plausible that there will be some connection between
lim,, .., [Cp(x)]/n and k. Note that this is a rather delicate mathematical
question. If the optimal policies obtained from dynamic programming
were, in fact, independent of n, then standard ergodic theorems could be
used to demonstrate that these two costs are the same. However, if the
set-up cost is positive, we know nothing about the long-run behavior of
(S, ) sp), not even that the numbers converge. Contrary to the opinion that
seems to be held by a number of people, there are no general theorems
about the convergence of optimal inventory policies. Even if there were,
it would not be easy to demonstrate the equivalence of the two methods
of calculating long-run cost.
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This is precisely what Iglehart has done in chapter 1 of this volume.
He demonstrates the general theorem that

i G

Mo n

— k ,
and several related and stronger theorems. His method, which is based
upon some previous work of Bellman [5], [6], depends upon constructing
a solution to the modified functional equation

U)o+ & = puin ey — )+ L) + [ oy — Dol e}
and then demonstrating inductively that
O S CIEY S

for all x = X; the constant 4 depends upon X, which may be selected as
being arbitrarily large. Iglehart also demonstrates the interesting result
that if K = 0, then

% — %, —0(:/1—;)

which should be compared with the geometric rate of convergence in the
case of a positive interest rate.

The method of proof used by Iglehart has a remarkable connection with
the technique of “policy iteration” discusscd by Bellman [7] and Howard
[25]. To fix the ideas, let me return for a moment to the case of an infinite-
period problem with a positive interest rate. The associated functional
equation is

C(x) = min ey — ) +20) + « [ Clv — E)pl¢) |-

1
=

One procedure for solving this equation, which Howard calls “value itera-
tion” and Bellman the ‘“‘method of successive approximations,” is to
follow the method of the previous section, i.e., to calculate the functions
C,(x) and take their limit as # tends to infinity. This method may be
modified somewhat, since we are interested only in the infinite-period
problem, by taking as the initial choice of Cy(x) some function other than
the one identically zero. As we know, the cost functions will converge,
and therefore the optimal policy for the infinite-period problem will be
obtained.

There is a modification of this approach, halfway between the value
iteration and policy iteration techniques, which utilizes the fact that for
certain cost functions we do know the form of the optimal policy. For
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example, if we know that the optimal policy is (S, s5), we may sclect an
arbitrary choice of these two numbers and solve the following equation
for C(x):

K+c~(s—x)+L(S)+af°0(5—g)<p(§)dg x<s,
Clx) = e

%) + o f Clx — (&) de x>,

This equation is a modification of the standard renewal equation and may
be solved by any number of methods. The resulting function C{x) will,
of course, depend upon the particular policy used. The optimal policy
will then be obtained by minimizing, say, C(0), with respect to S and s.
This procedure, which is obviously similar to the stationary analysis
described above, was first suggested by Arrow, Harris, and Marschak [1].

A third method for the infinite-period problem with a discount factor
Is that of policy iteration. The difference between this method and the
previous one is somewhat subtle; we begin in the same way by selecting
the policy and calculating the function C(x). Since the policy is not optimal,
this is not the correct infinite-period cost. The next step is to obtain an
improvement over the original policy by selecting that policy y}x) = «
which minimizes

oy —x) + L)+« V: Cly — ple) i -

On the basis of this policy, a new cost function C(x) is calculated and then
a second policy y*(x) is selected, using an expression like that above with
C replaced by C'. The process continues until the same C is reached on
two successive stages.

To my mind, policy iteration has a serious drawback for the inventory
problem, even though it is undoubtedly an excellent procedure for other
problems, especially those in which the number of state variables is finite.
The drawback is that although (S, s) policies may be optimal, the C func-
tions appearing in the middle of the calculation will not be K-convex,
and the intermediary policies will therefore be of a more complex sort.
Calculating the subsequent C’s will be more difficult than solving a renewal
equation. For finite-state problems the C’s may be calculated by inverting
a matrix; in the inventory problem, however, there is considerable informa-
tion about the structure of the problem that should not be omitted in the
calculation of optimal policies.

Of the three techniques described above, the first two go over immediately
to the case of a zero interest rate. For policy iteration, however, there is
no analogue of the function C(x). Howard suggests (in another context
and in another notation) that the calculation be based on the functions ¢(x)
and the related equation.
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The technique of policy iteration has much in common with a recent
suggestion for solving infinite-period inventory problems by means of
linear programming (see Manne [4]], Wagner [56], and d’Epenoux [14]).
I shall begin with the ideas of d’Epenoux. Since the problem is to be dis-
cussed by means of linear programming, we must assume a finite number
of stock sizes at the beginning of the period, and this is most conveniently
done by assuming that excess demand is not backlogged, that stock sizes
are integral multiples of some common unit, and that no order is placed
which raises stock to a level above, say, N.

Instead of the functions C(x), we shall be dealing with a discrete sequence
¢;, the minimum discounted cost if the problem begins in state i. 'The
functional equation satisfied by these costs will be

A=j+1

where I;; represents the purchase, holding, and shortage cost if we begin
in state 7 and raise stock to statej. 'I'he fact that there are two terms involving
the demand distribution (py, p,, ...) depends upon the assumption that
we are not backlogging.

To convert this problem to a linear programming problem we consider
€p,y Cp» -y €y to be the variables of the problem, unrestricted in sign, and

satisfying the N(N + 1)/2 linear inequalities

cz_1u+a2 R

k=j+1

There 1s an inequality for every pair (7,) with j = 7. We then select an
arbitrary set of non-negative weights #,, ..., uy (not all zero) and consider
the problem of maximizing X u;c; with respect to all of those {¢;} satisfying
the above linear equalities. Assuming that the optimal inventory policy is
unique (there are, otherwise, some problems of degeneracy), we may
show that the same solution is obtained regardless of the values of the u; .
Moreover, the solution will have the following important property: for
every 7 there will be a single value of j = 7 for which there is equality for
the corresponding linear inequality. This means, of course, that the solution
of the linear programming problem satisfies the optimal inventory equation

This seems like an entirely different approach to the solution of inventory
problems. It is, however, relatively casy to see that if we solve the dual
of this linear programming problem, we are essentially using the method
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of policy iteration. The dual problem involves non-negative variables x;
with j = 7. The dual constraints (one for each 7) are

e D i (2] = G #0),

and

S o (o) (o) = .

m

and we are to minimize XX, _, /;x,; .

It is simple to verify that the dual constraints imply that
X¥;o % = Zug(l — o). Since the only condition on the u, is that they
be non-negative with a sum different from zero, we may replace this

problem by that of minimizing XX, /;x;; subject to

2 11—°‘2P) z(\Ex,,,]);O (1750),

jzi jzi m

E)xw _0‘2 (% Pl) (2 ,,u) =0
and

PPN

jzi

Now in the policy iteration technique we begin with a specific inventory
policy giving j as a function of 4. Let us see how this policy may be used
to obtain a feasible solution to the dual problem. If this policy is used,
the stock on hand at the beginning of a period forms a Markov process,
and we may calculate m(n), the probability that the system is in state ¢
at the beginning of period », given any particular initial distribution 7,(0).
We then define «,;:

o= (1 =) 3 o m(n)
n=0

if the policy under question involves raising the stock fromtoj, and x; = 0
otherwise. It may be verified by direct substitution that these quantities
satisfy the dual constraints.

The next step in policy iteration is to calculate the C functions based
on this policy, or, in our context, to calculate the numbers ¢, ¢, , ..., ¢y
that satisfy the primal constraints with equality for those palrs &7 mvolved
in the policy. But these numbers will obviously be the prices associated
with the particular dual feasible solution we have obtained. The next
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step in the simplex method is to obtain another dual feasible solution based
on the prices that have been calculated, and it is at this point that the
simplex method and policy iteration diverge slightly. Both methods lead
to an alternative dual feasible solution; in the simplex method the new
basis is adjacent to the old one, whereas in Howard’s method the new
basis may involve a substantial change.

In the case of a zero interest rate (the case discussed by Manne), the
dual variables x;; may be identified with the joint stationary probabilities
of being in state ¢ and raising stock to state j, based on the particular policy
being used, and the problem is then to minimize stationary expected cost.
The primal problem involves quantities analogous to the ¢ functions
previously discussed. Again there is a great similarity between Howard’s
ptocedure and the simplex method, with the important difference noted
above.

It is now time to leave these matters and turn to a discussion of the
different inventory models that have been suggested for use with the
stationary approach. Many operations research texts discuss a simple-
looking continuous-time inventory model that yields the Wilson lot-size
formula and a corresponding equation for s. The model is never discussed
from the point of view of finding the stationary distribution for a class of
policies and then minimizing cost with respect to the policy variables.
Often the approach taken obscures the fact that the model as usually
presented contains a large number of contradictions that can be avoided
only by rather restrictive assumptions, such as that demand arises from a
Poisson time series, and the like. Perhaps the clearest treatment of this
particular model is to be found in Schlaifer [53].

The techniques for analyzing continuous-time inventory models correctly
are very similar to those of queueing theory. Consider, for example, the
following model: items are demanded one at a time according to a Poisson
time series. When an order is placed the lead time distribution is assumed
to be exponential, with independent lead times for different orders; for
the moment let us assume that if a demand cannot be satisfied out of
current stock, it will be lost.

In order to apply the stationary approach to this problem, it is necessary
to specify an inventory policy. Since excess demands are not backlogged
and there is a random lead time that may overlap orders, it is no longer
correct that simple policies such as (S, s) policies will be optimal. There
is no reason, however, why we should not restrict our attention to policies
such as (S, 5) policies and attempt to select the one that minimizes long-run
cost.

Let us begin with the special case of an (S, s) policy based on stock on
hand plus stock on order in which s = & — 1. This means that a total of
S items are to be kept on hand and on order; whenever a demand is satis-
fied, an additional order is placed. With these assumptions, the number
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of outstanding orders is a continuous-time Markov process. The stationary
distribution for the number of outstanding orders proves to be

a™{m!
TR
J
er_o ofjl

Ty =

where « is the expected lead time multiplied by the average demand per
unit of time,

This model is identical with the machine repair problem, which is well
known in queueing theory (see Feller [17, p. 416]). In this latter problem
a single repairman services S machines, whose failure times are independ-
ently and exponentially distributed. The repair time for a machine is
assumed to be exponential, and machines queue for service if several
have failed. The number of machines currently operating is identical with
the number of outstanding orders in the inventory problem.

For the particular policy described above, the limiting distribution
proves to be independent of the specific form of the service-time distribu-
tion, and depends only on its mean. This result is also correct if excess
demands are backlogged. A corresponding result holds if we consider an
(S, s) policy with s — 0. In this case the relevant variable is the number
of items in current inventory, and the limiting distribution is

o 1

ZFI'&": P = : (m>l)

Po

‘I"his model, assuming Poisson demand, exponential lead time, and a
general (S, 5) policy, has been analyzed by Scarf [49] in both the backlog
and the non-backlog form, and also by Morse [45] and by Galliher, Morse,
and Simond [19]. As might be expected, results are considerably easier
to obtain in the backlog case; and it is also possible to generalize the model
to one in which there is an arbitrary distribution of time between successive
demands and an arbitrary lead time distribution. (See Karlin and Scarf [37]
for an analysis of this problem that leans heavily upon some previous work
of Takacs [54].)

Occasionally the analysis is made somewhat simpler by the use of other
types of policies. For example, Morse [45] considers the following version
of an (S, s) policy: When inventory falls to s, an order of size § — s is
requested; if inventory on hand is depleted to zero while this order is
outstanding, an additional order of size s is placed.

Another variation is considered by Gaver [20]. When stock on hkand
falls to s, an order of size (S — s) is requested; only one outstanding order
1s permitted at any given moment of time. A general lead-time distribution
is considered, excess demand is not backlogged, and a compound Poisson
process 1s assumed for demands.
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A third variation is discussed by Karlin and Fabens [35] and by Hadley
and Whitin [23] in a discrete-time inventory model of the type considered
at the beginning of this section. Orders are placed whenever stock falls
below s, but the order size is a multiple of S — 5. The largest multiple
that keeps the stock size less than or equal to S after ordering is selected.
The virtue of this type of policy is that the stationary distribution of stock
size (after placing the order) will be uniform between s and S, regardless
of the demand distribution. For (S, s) policies of the conventional sort,
this result would be correct only for an exponential demand distribution.

All of the work reported in the last two sections has treated supply and
demand in a somewhat symmetrical fashion. Demands have been assumed
to be random and exogenously given, in contrast to supply, which has
been assumed to be controllable. There are any number of situations,
however, in which it is required to store an item whose supply is not
completely under our control. The most important example of this type
of situation is in the problem of water storage, where the supply of water,
possibly random, is given as a datum.

The problems of reservoir storage have been analyzed by means of
techniques very similar to those already described for the inventory problem,
although a number of modifications must be made in incorporating exoge-
nous supply. A thorough treatment of this area would require at least
as many pages as | have already given to inventory theory. It secms more
appropriate to indicate several references that the reader may wish to
pursue himself.

For the deterministic version, the paper by Koopmans [39] may be
consulted, and for the dynamic programming approach, the article by
Gessford and Karlin [21], and also the book by Massé [42]. A vast amount of
work has been done on the stationary analysis of water storage problems
under the heading of the Theory of Dams. Much of the work done in
this field prior to 1959 is discussed by Moran in [44].

5. Multi-Echelon Inventory Problems

In the last several sections I have surveyed the major techniques that
have been used to analyze decisions about the control of a single item
stocked at a single installation. The relatively simple inventory policies
obtained from this type of analysis are probably sufficient for the control
of low-cost routine items. On the other hand, if we are concerned with
high-cost items of considerable impartance, with relatively small demands,
it may be useful to consider a more elaborate type of analysis.

One of the assumptions implicit in our previous treatment of the inven-
tory problem was the infinite availability of stock. Delivery of an order
was agsumed to occur with some fixed or perhaps random lead time inde-
pendently of the size of the order. The lead time may be thought of as
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the time required to manufacture the item, the time necessary to transport
the item, or some combination of the two. If the former interpretation is
taken, our previous assumption of infinite availability of stock is equivalent
to assuming away any possible limitations on the rate at which the item
may be produced. Some work has been done on the calculation of optimal
policies for the inventory problem with random demands, with the costs
of modifying the rate of production explicitly considered (Beckmann [4]
and Orr [46]). As might be expected, both the functional equations and
the optimal policies are of a more complex sort than those previously
obtained.

If the lead time in delivery is considered to be primarily the time required
to transport the item, our previous analysis i1s equivalent to assuming the
existence of a large supply of the item stocked at some alternative location,
say a warehouse. For low-demand items, however, warehouse supply
should not be taken for granted. The warehouse may itself run out of
stock, resulting in longer lead times for the delivery of stock to the using
activity. It would seem appropriate, in this type of situation, to consider
the problems of stocking at the warehouse and at the using activity together,
as a single inventory problem.

The warehouse may, of course, be supplying stock to several installa-
tions. One of the problems would then be that of allocating available ware-
house stock among the various installations sending in requests. This
problem would be most pronounced in those periods in which warehouse
stock was insufficient to satisfy all incoming requests. On the other hand,
if stocks are maintained at several installations, at the beginning of a period
one installation may be considerably overstocked in comparison with the
others. In this event, it may be economical to transship stock among the
various installations, in addition, perhaps, to delivering stock from the
warehouse. If the stockage and transportation decisions are considered
simultaneously, it should be clear that optimal policies will be of a rather
complex form.

In chapter 3 of this volume Gross considers the single-period problem
with one warehouse, and an arbitrary number of activities supplied by
the warehouse. Optimal policies are obtained for two using activities, and
an iterative procedure is given for the general case. In chapter 5 of this
volume, Hadley and Whitin suggest various simple policies for the multi-
period version of this problem.

The dynamic, multi-installation inventory problem can be examined
from the point of view of dynamic programming. As usual, we define a
sequence of cost functions whose independent variables indicate the state
in which the system may be. The cost functions will satisfy a recursive
equation, which may, at least in theory, be solved so as to obtain optimal
purchasing and transshipment rules. The difficulty is, however, that the
number of possible states will be exceptionally large. The disposition of
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stock at all of the installations will have to be indicated, along with a
description of quantities on order and being shipped. With so large a
number of possible states, dynamic programming calculations take a
long time.

The same type of difficulty appeared in our previous discussion of
optimal policies in the presence of a lead time in delivery. We overcame
the delivery lead time problem by assuming that excess demand is back-
logged, and on the basis of this assumption transforming the functional
equation te one involving a single variable. For certain rather extreme
types of multi-echelon problems, a similar type of approach is possible
(see Clark [11] and Clark and Scarf [12]).

Consider the case of NV installations arranged in series, so that installa-
tion 1 receives stock from installation 2, 2 from 3, and so on. Stock enters
the system through the highest installation, with a fixed delivery lead time,
and is shipped through the subsequent installations, stock being removed
at each step to satisfy random demands. If the following assumptions are
made, then the optimal policies may be calculated easily.

1. The cost of shipping from a single installation to the next one is
proportional to the quantity shipped.

2. Excess demand is backlogged.

3. The expected holding and shortage costs to be charged to each installa-
tion during a single period are functions of the stock at that installation
plus all stock in transit and on hand at lower installations.

Of the three assumptions, the first is the crucial one; the third may easily
be satisfied by an appropriate accounting of holding and shortage costs.

Let me consider a special case in order to indicate how the method
works. There will be two installations, with installation 1 receiving stock
from installation 2. Both the shipment time from 2 to | and the lead time
to 2 will be assumed to be a single period. Demand for the item occurs
only at the lower installation with a density ¢(£). The expected holding
and shortage cost functions will be L,(x,) and L,(x,), respectively, with x,
representing stock at both installations.

At any moment of time the state of the system is described by the pair
(%; , x,), and we may therefore define a sequence of minimum cost functions
C,.(x, , x,) that satisfy

Cly 5 %) = e(z) + ex (¥ — %) -+ Ly(#1) + Ly(xy)

min
B SYST,
0=z

o [T Oy —m 5 — e

where ¢(z) is the cost of purchasing z units, and ¢, the unit transportation
cost. We begin our analysis of this equation by considering the lower
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installation by itself, and the functional equation that would apply if
there were no limitation on available stock, i.e.,

Culom) = uin ez~ (v =) + D) + o [ Conaloy — E)p(6) ]

If L, is convex, the optimal policy for this equation, which as yet has no
relevance to the original problem, is determined by a sequence of critical
numbers ¥,, &5, X5, ..., with the interpretation that at the beginning of
each period stock is raised to the corresponding level. The problem, of
course, is that there may not be adequate stock at the second installation
to satisfy these requests. It may be shown, however, that the optimal
system policy is to satisfy as many of these requests as possible.

This takes care of the optimal policy at the lower installation. The
remaining problem is to determine the ordering policy for system stock.
The rather surprising conclusion is that the system stockage policy is a
function of x, alone; moreover, the optimal policy may be obtained from
the recursive calculation of a sequence of functions of one variable. The
important idea is that the system shortage cost involved in L, must be
augmented by an additional shortage cost resulting from the fact that
systemn stock may be insufficient to supply the requests from installation 1.

The actual determination of the additional shortage cost is relatively
simple. Suppose that at the beginning of period »n, the stock on hand at
the lower installation is ¥ < %, . An order of size &, — u would then be
placed, resulting in a cost of

00

er (= w) + L) + o | Coal® — Ope) de -

If the system stock x, is less than £, , it will be impossible to satisfy this
request, and the resulting cost will be

er (i =) 1) e | Cosla — (E) .

The second cost is larger than the first, and the difference in cost is precisely
the incremental shortage cost to be charged to the system. This extra
cost may be written as

e (= %) o | [Coaly = &) — Curla — Ol
° (2 = &),
0 (23 > %) .

An(x2) =

The optimal system policy is then calculated on the basis of the functional
equation

7a(x2) = min | e(=) + Lo(w) + Aulrg) + o | guialie + 2 — E)p(6) ] .



222 HERBERT E. SCARF

In the case of several installations linked in series, the procedure may
be repeated with an additional shortage cost added at each step because
of the inability to satisfy requests from below. It is important to realize
that we are, in fact, obtaining optimal policies. Although the argument
given above has a fanciful quality, it may be made quite rigorous by means
of the result

Cn(xl H ’Cz) = Cn(xl) + q"(x2) .

The arrangement of installations involved in the preceding discussion
is unusual. The more customary situation would be one in which a ware-
house serves several installations rather than just onc. In this case the
procedure suggested by Clark is to calculate the critical numbers at each
of the lower levels independently. If at the beginning of a period system
stock is inadequate to supply all requests, the available stock is rationed
among the various installations so as to minimize the sum of the additional
shortage costs.

This policy is generally not optimal. In order to obtain an optimal policy
it would be necessary to add an additional shortage cost that depends not
only on system stock, but on the actual distribution of stock among the
lower levels. If this were done, however, we would no longer be calculating
system purchases on the basis of functions of a single variable.

There is one possible suggestion that has not yet been thoroughly
explored. That is to attempt to bound the additional shortage cost from
above and below by functions of x, alone. If this were done, we would
obtain simple bounds both above and below for the true minimum cost,
and also a policy whose cost falls between these bounds. If the bounds
were close, the policy could be used.

This type of approximation has not yet been done for the case of a
warehouse supplying several installations. It has, however, been discussed
for a different multi-echelon problem that is not capable of being factored.
The problem is that of two installations arranged in series, with a set-up
cost in transportation between them (Clark and Scarf [13]).
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